全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > 可编程逻辑 >

国产FPGA SOC 双目视觉处理系统开发实例

时间:2025-09-01 14:14

人气:

作者:admin

标签:

导读:1.系统架构解析本系统基于米尔MYC-YM90X构建,搭载安路DR1FPGASOC创新型异构计算平台,充分发挥其双核Cortex-A35处理器与可编程逻辑(PL)单元的协同优势。通过AXI4-Stream总线构建的高速数据...

1. 系统架构解析

本系统基于米尔MYC-YM90X构建,搭载安路DR1 SOC 创新型异构计算平台,充分发挥其双核Cortex-A35与可逻辑(PL)单元的协同优势。通过AXI4-Stream总线构建的高速数据通道(峰值带宽可达12.8GB/s),实现与FPGA间的纳秒级(ns)延迟交互,较传统方案提升了3倍的传输效率,极大地提升了系统整体性能。

国产化技术亮点:

  • 全自主AXI互连架构,支持多主多从拓扑,确保系统灵活性与可扩展性
  • 硬核处理器与PL单元共享3,提高内存带宽利用率(可升级至DDR4)
  • 动态域隔离技术(IT),确保跨时钟域的数据交互稳定性,避免时序错误
  • 国产SM4加密引擎硬件加速模块,为数据加密任务提供硬件级别的支持,提升加密处理效率
73fda53a-ef1e-11ef-9434-92fbcf53809c.png

图一 系统架构框图

如图一所示,系统架构通过“低内聚,高”的设计思想,通过模块化的设计方式,完成了以下工作。

1. 通过I²C对OV5640摄像头进行分辨率,输出格式等配置。2. 双目图像数据进行三级帧缓存,FIFO————DDR。3. 客制化低延迟ISP(根据场景需求加入)

4. VTC驱动输出显示

2. 系统程序开发

2.1 DR1固件架构设计

GUI设计界面,类Blockdesign设计方式,通过AXI总线,连接DR1的ARM核与定制化外设,包括,模块,PL DMA和VTC。

74115102-ef1e-11ef-9434-92fbcf53809c.png

图二 FPGA底层架构框图

2.2 双目视觉处理流水线

2.2.1 配置层

为实现高效的传感器配置,本系统采用混合式I²C配置引擎,通过PL端硬件I²C控制器实现传感器参数的动态加载。与纯软件方案相比,该硬件加速的配置速度提升了8倍,显著降低了配置延迟。

// 可重配置传感器驱动IPmodule ov5640_config (input wire clk_50M,output tri scl,inout tri a,input wire [7:0] reg_dr,input wire [15:0] reg_data,output reg config_done);// 支持动态分辨率切换(1920x1080@30fps 1280x720@60fps)parameter [15:0] RESOLUON_TABLE[4] = '{...};

该配置引擎支持多分辨率与高帧率动态切换,适应不同应用场景需求。

2.2.2 数据采集管道

系统构建了三级缓存体系,确保数据处理的高效性和实时性:

  • 像素级缓存:采用双时钟FIFO(写时钟74.25MHz,读时钟100MHz),实现数据的稳定缓存和传输。
  • 行缓冲:使用BRAM的乒乓结构(每行1920像素×16bit),减少数据延迟。
  • 帧缓存:通过DDR3-1066 1GB内存支持四帧循环存储,确保图像的持续流畅展示。

// 位宽转换适配器module data_width_converr #(parameter IN_WIDTH = 16,parameter OUT_WIDTH = 96)(input wire [IN_WIDTH-1:0] din,output wire [OUT_WIDTH-1:0] dout,// 时钟与使能);// 采用流水线式位宽重组技术always_ff @(posedge clk) begincase(state)0: buffer <= {din, 80'b0};1: buffer <= {buffer[79:0], din};// ...6周期完成96bit组装endcaseend

2.2.3. 异构计算调度

系统通过AXI-DMA(Direct Memory cess)实现零拷贝数据传输,优化内存和外设间的数据交换:

  • 写通道:PL→DDR,采用突发长度128、位宽128bit的高速数据传输
  • 读通道:DDR→HDMI,配合动态带宽分配(QoS等级可调),确保不同带宽需求的动态适配

2.2.4 VTC显示引擎深度优化

  • PL DMA输出显示优化
  • 显示时序的优化对高质量图像输出至关重要。通过VTC(Video Timing Controller),本系统能够实现多模式自适应输出。

axi_hdmi_tx#(.ID(0),.CR_CB_N(0),.DEVICE_TYPE(17), // 17 for DR1M.INTERFACE("16_BIT"),.OUT_CLK_POLARITY (0))axi_hdmi_tx_inst (.hdmi_clk (pll_clk_150),//.hdmi_clk (clk1_out),.hdmi_out_clk (hdmi_clk ),.hdmi_16_hsync (hdmi_hs ),.hdmi_16_vsync (hdmi_vs ),.hdmi_16_data_e (hdmi_de),.hdmi_16_data (/hdmi_data/ ),// .hdmi_16_data (hdmi_data ),.hdmi_16_es_data (hdmi_data),.hdmi_24_hsync (),.hdmi_24_vsync (),.hdmi_24_data_e (),.hdmi_24_data (/{r_data,g_data,b_data}/),.hdmi_36_hsync (),.hdmi_36_vsync (),.hdmi_36_data_e (),.hdmi_36_data (),.vdma_clk (pll_clk_150 ),.vdma_end_of_frame (dma_m_axis_last ),.vdma_valid (dma_m_axis_valid ),.vdma_data (dma_m_axis_data ),.vdma_ready (dma_m_axis_ready),.s_axi_aclk (S_AXI_ACLK ),.s_axi_aresetn (S_AXI_ARESETN ),.s_axi_awvalid (axi_ds5_ds5_awvalid ),.s_axi_awaddr (axi_ds5_ds5_awaddr ),.s_axi_awprot (axi_ds5_ds5_awprot ),.s_axi_awready (axi_ds5_ds5_awready ),.s_axi_wvalid (axi_ds5_ds5_wvalid ),.s_axi_wdata (axi_ds5_ds5_wdata ),.s_axi_wstrb (axi_ds5_ds5_wstrb ),.s_axi_wready (axi_ds5_ds5_wready ),.s_axi_bvalid (axi_ds5_ds5_bvalid ),.s_axi_bresp (axi_ds5_ds5_bresp ),.s_axi_bready (axi_ds5_ds5_bready ),.s_axi_arvalid (axi_ds5_ds5_arvalid ),.s_axi_araddr (axi_ds5_ds5_araddr ),.s_axi_arprot (axi_ds5_ds5_arprot ),.s_axi_arready (axi_ds5_ds5_arready ),.s_axi_rvalid (axi_ds5_ds5_rvalid ),.s_axi_rresp (axi_ds5_ds5_rresp ),.s_axi_rdata (axi_ds5_ds5_rdata ),.s_axi_rready (axi_ds5_ds5_rready));

  • 动态时序生成器
  • 通过PL-PLL动态调整像素时钟,确保显示无卡顿、无闪烁,误差控制在<10ppm内。

// VTC配置代码片段(An SDK)void config_vtc(uint32_t h_total, uint32_t v_total) {VTCRegs->CTRL = 0x1; // 使能软复位VTCRegs->HTOTAL = h_total - 1;VTCRegs->VTOTAL = v_total - 1;// 详细时序参数配置VTCRegs->POLARITY = 0x3; // HS/VS极性配置VTCRegs->CTRL = 0x81; // 使能模块}

3. 硬件连接与测试

  • 硬件连接

米尔的安路飞龙板卡采用2 X 50 N 设计,可灵活插拔多种子卡,配合子卡套件,可扩展成多种形态,多种应用玩法。

742b859a-ef1e-11ef-9434-92fbcf53809c.png

图三 使用模组,底板,子卡和线缆搭建硬件系统

  • 显示测试

实测双目显示清晰,无卡帧,闪屏。

7454c07c-ef1e-11ef-9434-92fbcf53809c.png

图四 输出显示效果

  • 系统集成
  • 在FPGA硬件描述文件的基础上,进一步在下实现双摄,为复杂系统调度应用铺平道路。
  • 内核加载5640驱动下通过dma搬运ddr数据,在应用层中通过v4l2框架显示到HDMI上,完整数据流如下:
  • FPGADDR→AXI-DMA控制器→LinuxDMA引擎→内核dma_buf→V4L2vb2队列→mmap用户空间→应用处理

三路DMA设备树HDMI、camera1、camera2代码片段:

//hdmisoft__dma0: dma@80400000 {compatible = "adi,axi-dmac-1.00.a";reg = <0x0 0x80400000 0x0 0x10000>;interrupts = ;clocks = <&axi_dma_clk>;#dma-cells = <1>;status = "okay";adi,channels {#size-cells = <0>;#address-cells = <1>;dma-channel@0 {reg = <0>;adi,source-bus-width = <32>;adi,source-bus-type = <0>;adi,destination-bus-width = <64>;adi,destination-bus-type = <1>;};};};// cam1mipi_adi_dma0: dma@80300000 {compatible = "adi,axi-dmac-1.00.a";reg = <0x0 0x80300000 0x0 0x10000>;interrupts = ;clocks = <&axi_dma_clk>;#dma-cells = <1>;status = "okay";adi,channels {#size-cells = <0>;#address-cells = <1>;dma-channel@0 {reg = <0>;adi,source-bus-width = <128>;adi,source-bus-type = <1>;adi,destination-bus-width = <64>;adi,destination-bus-type = <0>;};};};//caipi_adi_dma1: dma@80700000 {compatible = "adi,axi-dmac-1.00.a";reg = <0x0 0x80700000 0x0 0x10000>;interrupts = ;clocks = <&axi_dma_clk>;#dma-cells = <1>;status = "okay";adi,channels {#size-cells = <0>;#address-cells = <1>;dma-channel@0 {reg = <0>;adi,source-bus-width = <128>;adi,source-bus-type = <1>;adi,destination-bus-width = <32>;adi,destination-bus-type = <0>;};};};

双路OV5640设备树配置代码片段

camera@3c { compatible = "ovti,ov5640"; pinctrl-names = "default"; // pinctrl-0 = <&pinctrl_ov5640>; reg = <0x3c>; clocks = <&ov5640_clk>; clock-names = "xclk"; // DOVDD-supply = <&vgen4_reg>; /* 1.8v / // AVDD-supply = <&vgen3_reg>; / 2.8v / // DVDD-supply = <&vgen2_reg>; / 1.5v / powerdown-gpios = <&portc 8 GPIO_ACTIVE_HIGH>; reset-gpios = <&portc 7 GPIO_ACTIVE_LOW>; port { / Parallel bus endpoint / ov5640_out_0: endpoint { remote-endpoint = <&vcap_ov5640_in_0>; bus-width = <8>; data-shift = <2>; / lines 9:2 are used */ hsync-active = <0>; vsync-active = <0>; pclk-sample = <1>; }; }; };

  • 性能测试

性能实测数据。

指标实测值理论峰值
图像处理延迟18.7ms≤20ms
DDR吞吐量2GB/s2.6GB/s
功耗(全负载)3.8W4.2W
启动时间(Linux)18s-

4. 场景化应用扩展

该方案可广泛应用于以下领域:

  1. 智能驾驶:前视ADAS系统,包含车道识别和碰撞预警
  2. 工业检测:高速AOI(自动光学检测)流水线,提升检测精度和效率
  3. 医疗影像:内窥镜实时增强显示,支持多视角成像
  4. 导航:SLAM(同步定位与地图构建)点云加速处理,提升机器人自主导航能力

通过安路TD 2024.10开发套件,开发者能够快速移植和定制化开发,具体包括:

  • 使用GUI图形化设计约束工具,简化硬件开发过程
  • 调用预置的与处理器IP,加速产品开发上市时间,专注应用和的处理
  • 进行动态功耗分析(DPA)与,确保系统的稳定性与高效性

0. One More Thing…

这里,回到我们原点,回到我们开发设计国产 FPGA SOC的初衷 ,芯片也好,模组也好,都只是开始,无论是FPGA,SOC,或者SOM,都是为了以更快,更好,平衡成本,体积,开发周期,开发难度,人员配置等等综合因素,做出的面向解决问题的选择,最终结果是降低成本和产品力的平衡。

安路飞龙系列的问世,让我们很欣喜看见国产SOC FPGA的崛起,希望和业界开发者一起开发构建国产SOC FPGA生态,所以选择将系列以知识库全部开源,共同无限进步!

747c518c-ef1e-11ef-9434-92fbcf53809c.png

温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信