全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > 可编程逻辑 >

空中客车使用MATLAB设计基于FPGA的机载深度学习处

时间:2024-03-28 10:21

人气:

作者:admin

标签:

导读:现代空间飞行器必须持续监控遥测数据,并检测或预测传感器数据中的任何异常行为。...

现代空间飞行器必须持续监控遥测数据,并检测或预测传感器数据中的任何异常行为。由于从机载传感器接收到的数据维度高且数据量大,基于阈值的监控等传统方法显得捉襟见肘。轨道卫星的环境具有高度动态性,这也使得识别异常指标充满挑战性

为了克服这些挑战,空中客车防务与航天公司 Airbus 决定开发用于故障检测、隔离和还原 (FDIR) 的机载系统,以实现异常检测深度学习模型。 空中客车发现,FPGA 以其高性能、长寿命成为机载航天器系统的理想平台。FPGA 可重新编程,能够耐受空间辐射,并可设计成低功耗器件。

然而,对于此级别的时间关键型任务,使用资源有限的 FPGA 实现深度学习模型,可能是一项巨大的挑战。 空中客车的设计团队选择使用 Deep Learning HDL Toolbox 来生成 MATLAB 深度学习处理器 IP 核作为人工智能加速器。该工作流支持使用 FreeRTOS 作为操作系统

为了进行测试,空中客车使用了 AMD Zynq UltraScale+ MPSoC ZCU102 板以及长短期记忆 (LSTM) 模型,该模型是基于一组相关的遥测参数训练的。

此外,更新 LSTM 模型不需要对 FPGA 重新编程,因为只需重新编译更新后的模型并将其下载到深度学习处理器中。

“从本质上讲,MATLAB 深度学习处理器 IP 核与平台无关。这使其能够被集成到可通过太空认证的实时操作系统中。我们面临的一大挑战是开发与之交互的应用,而在这一方面,MathWorks 提供了很多支持。”

—— Andreas C. Koch,空中客车机载软件工程师

TensorFlow 中训练的 LSTM 模型导入 MATLAB 中。基于这些模型,该团队针对性能和资源使用情况,对深度学习处理器配置进行了优化。此后,他们使用 HDL Coder 将深度学习处理器 IP 核生成为独立于目标的可综合 HDL 代码,并通过 AXI 接口将其集成到空中客车的参考设计中。

然后,工程师使用基于 Python 的工作流对深度学习处理器进行编程,并从 AMD Zynq MPSoC 上的 Arm 处理器触发它。

在硬件板上针对运行卫星上检测到的异常来测试 FDIR 系统时,深度学习处理器能够在可靠工作的同时,满足吞吐量和功耗的要求。空中客车计划在将来的航天器上部署基于 FPGA 的 FDIR 系统。

e1bb873c-ec2b-11ee-a297-92fbcf53809c.jpg

基于 FPGA 的深度学习网络检测到的真实异常。

空客Airbus 取得的关键成果

开发了基于 MATLAB 的工作流,用于在 FPGA 上进行深度神经网络的快速原型构建和验证,从而实现硬件、系统和深度学习工程师之间的协作

与基于阈值的传统方法相比,更早地检测到潜在的卫星故障模式

生成了深度学习处理器,可供任何采用 FreeRTOS 或其他操作系统的 FPGA 供应商使用和部署

可以在板上更新深度学习模型,而不需要对 FPGA 重新编程

空客 Airbus 使用到的产品

MATLAB

Deep Learning HDL Toolbox

Deep Learning Toolbox

HDL Coder




审核编辑:刘清

温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信